Background: Taniborbactam is an investigational β-lactamase inhibitor that restores cefepime (FEP) activity against FEP-, carbapenem-, and multidrug-resistant (MDR) Enterobacterales and Pseudomonas aeruginosa producing serine- and metallo-β-lactamases. Cefepime-taniborbactam (FTB) was superior to meropenem (MEM) for the primary composite (microbiologic and clinical) endpoint at test of cure in adults with cUTI in the CERTAIN-1 study (NCT03840148). We compared susceptibility to FEP, FTB, and MEM among Enterobacterales and P. aeruginosa recovered at baseline. Methods: MICs were determined by broth microdilution (CLSI M07) for baseline pathogens from patients in the extended microbiologic intent-to-treat population (Enterobacterales and/or P. aeruginosa at ≥10^5 CFU/mL in urine against which ≥1 study drug had activity [FTB MIC ≤16 µg/mL; MEM MIC ≤2 µg/mL (Enterobacterales) or ≤4 µg/mL (P. aeruginosa)]. Phenotypic subsets included ESBL, and FEP-, multidrug-, and carbapenem resistance (CLSI M100). Results: Taniborbactam decreased the FEP MIC₉₀ by ≥1,024-fold (to 1 µg/mL) against FEP-resistant, ESBL, and MDR subsets of Enterobacterales and by ≥128-fold (to 8 µg/mL) against carbapenem-resistant Enterobacterales (Table). FTB at ≤16 µg/mL inhibited 66.7%, 71.4% and 100% of FEP-, multidrug-, and carbapenem-resistant P. aeruginosa, respectively. Higher percentages of Enterobacterales and P. aeruginosa isolates, regardless of resistance phenotype, were inhibited by FTB compared to MEM.

Table. Cefepime (FEP), Cefepime-taniborbactam (FTB), and Meropenem (MEM) Susceptibility Summary for Baseline Isolates of Enterobacterales and P. aeruginosa from Patients in the Extended Microbiological Intent-to-Treat (extended MicroITT) Population

<table>
<thead>
<tr>
<th>Pathogen/phenotype (n)</th>
<th>MIC₉₀ or MIC range (µg/mL)</th>
<th>%Susceptible</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FEP</td>
<td>FTB</td>
</tr>
<tr>
<td>Enterobacterales overall (437)</td>
<td>512</td>
<td>0.25</td>
</tr>
<tr>
<td>Cefepime-resistant (106)</td>
<td>>512</td>
<td>1</td>
</tr>
<tr>
<td>ESBL (126)</td>
<td>>512</td>
<td>1</td>
</tr>
<tr>
<td>MDR (167)</td>
<td>>512</td>
<td>1</td>
</tr>
<tr>
<td>Carbapenem-resistant (10)</td>
<td>>512</td>
<td>8</td>
</tr>
<tr>
<td>P. aeruginosa overall (23)</td>
<td>32</td>
<td>16</td>
</tr>
<tr>
<td>Cefepime-resistant (6)</td>
<td>32-512</td>
<td>4-32</td>
</tr>
<tr>
<td>MDR (7)</td>
<td>16-512</td>
<td>4-32</td>
</tr>
<tr>
<td>Carbapenem-resistant (5)</td>
<td>4-512</td>
<td>4-16</td>
</tr>
</tbody>
</table>

Abbreviations: ESBL, extended spectrum β-lactamase (aztreonam, ceftazidime and/or cefepime MIC ≥2 µg/mL); FEP, cefepime; FTB, cefepime-taniborbactam; MDR, multidrug-resistant (resistant to ≥1 agent in ≥3 classes); MEM, meropenem.*In the absence of breakpoints, %Susceptible for cefepime-taniborbactam reflects % of isolates inhibited at ≤16 µg/mL.

Conclusions: Taniborbactam potentiated FEP activity against resistant isolates of Enterobacterales and P. aeruginosa from patients in the CERTAIN-1 cUTI study. These results are consistent with the ability of taniborbactam to restore
FEP activity against most isolates of FEP-, multidrug-, and carbapenem-resistant gram-negative pathogens producing serine- and metallo-β-lactamases in nonclinical studies.

---PAGEBREAK---

Control Number: 2023-A-46-ASM-ESC
Session: Poster Presentations Session II
Title: Exploring SAR-endolysins To Fight Multidrug-resistant Gram-negative Bacteria
Author: M. P. Gontijo; M. Teles; G. Perez Jorge; M. Brocchi; Duke Univ., Durham, NC, 2Itapira, SP, Brazil, 3campinas, SP, Brazil

Background: Treating infections caused by multidrug-resistant Gram-negative bacteria (MDR-GNB) is a challenge. Bacteriophage-derived lytic enzymes have been studied as a potential solution for treating these infections. Despite its potential, studies have shown that the outer membrane of GNB hampers the exogenous action of endolysins. However, recent research has demonstrated that endolysins with signal-anchor-release (SAR) domains can permeate the outer membrane of GNB. Therefore, this study aimed to determine the antimicrobial activity of SAR-endolysins against GNB strains. Methods: Based on genomic and metagenomic data, we previously described 66 SAR-endolysins. Combined with previously published data, there are 119 non-redundant SAR-endolysins described in the literature. We clustered these putative antimicrobial proteins using principal component analysis (PCA) based on biochemical properties and domain presence/absence. Then, we assessed the antimicrobial potential of one of the representative clusters against five bacterial species, including three MDR strains. The representative SAR-endolysin was cloned into PET29b, transformed into Escherichia coli Lemo 21(DE3), and purified using the Fast His-Tagged Protein Purification (Zymo Research). The in vitro antimicrobial activity was determined by the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) tests. Results: SAR domains were found in glycoside hydrolase families 19 (GH19), 24 (GH24), 25 (GH25), and 108 (GH108). SAR-endolysins were clustered into eight PCA groups. To assess the strength of the genomic/metagenomic screening and the potential antimicrobial activity of SAR-endolysins against Gram-negative pathogens, we chose one representative SAR-endolysin from the largest PCA group (103 out of 109; 94.50%) and evaluated the MIC and MBC for the GNB strains. SAR-endolysin LysKpV475 showed bacteriolytic activity ranging from 8.125 µg.ml⁻¹ for P. aeruginosa ATCC 27853 and 32.50 µg.ml⁻¹ for K. pneumoniae ATCC BAA-2146 (MDR) and E. cloacae P2224 (MDR). Bactericidal activity was observed for P. aeruginosa ATCC 27853 (32.50 µg.ml⁻¹) and P. aeruginosa P2307 (65.00 µg.ml⁻¹). Conclusions: These results highlight the importance of genomics and metagenomics in discovering new antimicrobials. Further studies are needed to determine the role of the SAR domain and the polyhistidine tag in the antimicrobial activity of SAR-endolysins. This study highlights the potential of SAR-endolysins to fight MDR-GNB.

---PAGEBREAK---

Control Number: 2023-A-56-ASM-ESC
Session: Poster Presentations Session II
Title: CZ-02s are a New Class of Antibiotics, with a New Mechanism-of-Action to Treat Multidrug-Resistant Bacteria
Author: C. Testa; H. Heine; G. Drusano; B. Purcell; A. Louie; K. Bartizal; M. Landward; H. Kanna Reddy; D. Zigar; R. Looper; Curza, Inc, Salt Lake City, UT; Univ. of Florida, Orlando, FL; Univ. of Utah, Salt Lake City, UT

Introduction: The CZ-02 class of antibiotics targeting the bacterial ribosomal P-site are being developed for treatment of multidrug-resistant (MDR) bacterial infections, including those caused by agents of biowarfare/terrorism. These unique antibacterials act on a clinically un-drugged binding site of the most validated intracellular antibacterial target (the ribosome) with a new mechanism of action (P-site inhibitors) and do not show cross-resistance to other antibiotics, including protein synthesis inhibitors. Methods: Antibacterial activity was assessed using the broth microdilution method to determine MICs, assay kits were used to evaluate inhibition of protein synthesis and cytotoxicity in vitro. Resistance frequency was determined by adding AIIPs to molten cation-adjusted Mueller Hinton agar at 2, 3, and 5X the MIC and incubated for 48h at 35°C. Pharmacokinetics were evaluated in infected and uninfected mice (male and female) administered a single subcutaneous dose with blood and epithelial lining fluid samples collected (4 mice/CZ-02) at 8 time points. Efficacy in a plague pneumonia model was accomplished by administering compounds at 4 doses q6h to mice that were exposed to Y. pestis CO92. For toxicology studies, rats were administered CZ-02s twice/day for 7 days. Clinical signs were monitored and histopathology performed for tissues from high-dose animals. Results: CZ-02s exhibit potent antibacterial activity against a wide variety of pathogens, including biohazards, significant ELF penetration with outstanding potency in vivo against Y. pestis CO92 and tolerability in animals administered multiple doses over 7 days. Conclusion: CZ-02s are being advanced as medical countermeasures against Tier 1 select agents, showing high-level potency.
against *Y. pestis*, *F. tularensis* and *B. mallei* with sub-μg/mL MICs. ADME profiling demonstrates good metabolic stability, low volume of distribution, excellent bioavailability with very low protein binding. PK shows favorable tissue distribution along with efficacy in mouse pneumonia models with low propensity for resistance and safety after multiple days of repeat dosing.

---PAGEBREAK---

Poster Presentations Session II

Extracellular Vesicles Exhibit Antibiofilm Effects on Pseudomonas aeruginosa

Background Antimicrobial resistance is implicated annually in over 35,000 deaths in the US and 1.27 million deaths worldwide. Thus, the need for new antimicrobial approaches is urgent and clear. A particular pathogen of concern is multidrug resistant *Pseudomonas aeruginosa* (PA), which is responsible for 32,000+ infections and 2,700+ deaths in the US yearly. One potential class of novel therapeutics is extracellular vesicles (EVs), which have been found to have intrinsic antimicrobial and anti-virulence properties. Additionally, EVs can provide a platform for combination antimicrobial therapy.

Methods Here, the antimicrobial activity of EVs on PA was explored in the context of biofilms of hypervirulent strain PA14. Preliminary studies identified human monocyte cell line THP-1 as a promising source of EVs for this application. THP-1 EVs were isolated using differential centrifugation and tangential flow filtration and analyzed using nanoparticle tracking analysis to determine size and concentration. These EVs were incubated with PA14 cells in a microtiter plate for 24 hours to allow biofilm formation. Then the biofilm was washed and stained with crystal violet followed by solubilization in 30% acetic acid and quantification with spectrophotometry to assess biofilm formation in the presence of THP-1 EVs.

Results THP-1 EVs were shown to reduce PA14 biofilm formation compared to negative controls no treatment (PBS) control and RPMI media control to account for the effects of co-isolated media contaminants (Fig. 1A) and this was shown to be dose dependent (Fig. 1B). Additionally, in a microtiter growth assay, THP-1 EVs were not shown to decrease PA14 growth, indicating an anti-virulence effect (Fig. 1C).

Conclusions Overall, these data implicate THP1 EVs as a potential antibiofilm therapeutic of interest, with mechanistic investigations still ongoing.

---PAGEBREAK---

Poster Presentations Session II

Time-Kill Kinetics of the Novel Broad Spectrum β-lactamase Inhibitor APC247

---PAGEBREAK---
Etrasimod and its Derivatives as Antibacterial Agents Against Gram-positive Bacteria

Background: Conventional discovery of antibiotics is a long and expensive process, with a low success rate, and has not been able to cope with the emergence of antibiotic resistance. (1) Over the past decades, drug repurposing has received increased attention as an attractive strategy for more efficient drug discovery, including antimicrobials. (2) We previously described the screening of FDA-approved drugs which led to identification of fingolimod, an S1PR modulator approved for the treatment of multiple sclerosis, to cope with the emergence of antibiotic resistance. (1) Over the past decades, drug repurposing has received increased attention as an attractive strategy for more efficient drug discovery, including antimicrobials. (2) We previously described the screening of FDA-approved drugs which led to identification of fingolimod, an S1PR modulator approved for the treatment of multiple sclerosis, as an antibacterial and anti-biofilm compound against *Staphylococcus aureus* (MIC 15 µM; 4.6 µg/mL) and *Acinetobacter baumannii* (MIC 25 µM; 7.7 µg/mL). (3) Thus, we set out to further explore the potential of other S1PR modulators as antibacterial agents.

Methods: Chemical synthesis and characterisation, antibacterial testing (MIC/MBC determination, time-kill, resistance development and checkerboard assay), cytotoxicity.

Results: We screened a small library of S1PR modulators against bacteria and identified etrasimod as a promising antibacterial compound. (4) Etrasimod, an investigational drug for the treatment of ulcerative colitis, displayed a potent activity against several Gram-positive bacteria, including drug-resistant *S. aureus* strains, *S. epidermidis* and *Enterococcus faecalis*, with an MIC 5 - 10 µM (2.3 - 4.6 µg/mL). It also displayed a synergistic effect with gentamicin against *S. aureus* and no in vitro toxicity towards mammalian cells. However, bacteria started to develop resistance after 10 days of exposure, which could potentially limit its use as antibacterial compounds. (4) We then prepared 32 etrasimod derivatives which provided insights on structure-activity relationships, and we found several etrasimod derivatives with more potent antibacterial activity. Indole derivative MZII-182 showed the most potent antibacterial activity, with MIC 2.5 - 5 µM (1 - 2 µg/mL) against MRSA, *S. epidermidis, E. faecalis* and vancomycin-resistant *E. faecium*. Furthermore, it showed bactericidal mode of action, low toxicity against mammalian cells and low development of bacterial resistance. (unpublished data)

Discovery and Development of Novel Inhibitors for Bacterial Ribosomal RNA Synthesis as First-In-Class Antimicrobial Candidates

X. YANG1, T. Tsang1, C. Ma3; 1The Chinese Univ. of Hong Kong, HONG KONG, China, 2HONG KONG POLYTECHNIC UNIV, Hong Kong

Background: There is an urgent need for the discovery of new antibiotics with a new mode of action as antimicrobial resistance (AMR) had been one of the major threats to the global public health. Bacteria transcription is a validated but underutilized target for antimicrobial discovery. RNA polymerase (RNAP) is the core enzyme and a number of transcription factors are involved in regulation of the process in bacteria.

Methods: Our group discovered the first-in-class bacterial rRNA transcription inhibitor as a novel antimicrobial agent. NusB and NusE are essential transcription factors responsible for bacterial rRNA synthesis. Based on the highly conserved interface between NusB and NusE, a pharmacophore model was constructed for in-silico screening. We found one lead compound MC4 with antimicrobial activity. Optimization of the hit compound was carried out by target based de novo design and over 200 analogues were made to determine the structure-activity relationship.

Results: Some derivatives showed drastically improved antimicrobial activity against a panel of clinical antibiotic resistant strains including MRSA and VRSA with the minimal inhibitory concentration (MIC) comparable to marketed antibiotics. The mechanism of MC4 derivatives were examined. At the molecular level, representative MC4 derivatives inhibited NusB-NusE interaction, and the in vitro transcription. At the cellular level, MC4 is able to disrupt the subcellular localization of the fluorescently labelled transcription machinery and reduce the total RNA and major rRNA. Since resistance in bacteria is a significant concern for antibiotic drugs, the possibility of resistance development was tested. Serial passaging of MRSA in the presence of representative MC4 derivatives at sub-inhibitory concentrations for 30 days did not generate resistant isolates compared to rifampicin control drug which generated 1000-fold of resistance after 5 days (unpublished). Representative MC4 derivatives showed very low level of haemolytic property against human blood cells, and high apparent permeability using the human intestinal epithelial cell line Caco-2. The MC4 derivatives were proven effective using a MRSA LD50 sepsis mouse infection model, and the PK profiles and tissue distribution were also established (unpublished).

Conclusions: In summary, we developed first-in-class drug candidates protected with international patent. The preclinical data indicated the compounds have high potential for further development as an antimicrobial drug candidate.

---PAGEBREAK---

Poster Presentations Session II

Susceptibility of the Anaerobes Bacteroides spp., Clostridium spp., and Clostridioides difficile to a Unique Synergistic Antibacterial Combination

J. L. Pace1, P. Martinez Ponce2, E. Rios-Nieves3, L. Dubreuil4, T. Hartsell1, S. Gardišk1, S. Volla2; 1FleurirABX, Elizabeth City, NC, NC, 2FleurirABX, LLC, Elizabeth City, NC, 3FleurirABX, Elizabeth City, NC, 4Univ. of Lille, Lille, France, 5Sentara Hlth.care, Elizabeth City, NC, NC, 6FleurirABX, Raleigh, NC, 7FleurirABX, Philadelphia, PA

Background: Bacteroides spp. and Clostridium spp. are encountered as a principle cause or in mixed moderate to severe infections of various soft tissues. Additionally, severe life-threatening colitis due to Clostridioides difficile remains a bane of modern medical practice. Where carbapenem or glycopeptide resistance is expected, antibiotic combinations are typically utilized. Unexpectedly, it has been observed that a combination (FTS) of fosfomycin (F) and trimethoprim-sulfamethoxazole (TS) exerts in-vitro antibacterial synergy across these anaerobic species.

Methods: A checkerboard version of the CLSI Agar Dilution method with Glucose-6-phosphate supplemented Brucella Blood agar was used. Minimal inhibitory concentrations (MIC) were determined for FTS, F or TS alone, and other antibiotic comparators. Incubation was in an anaerobic GasPak EZ container system at 35°C for 48 hours before visual observation of bacterial growth. The MICs were reported as the lowest drug concentrations inhibiting visible growth.

Results: Bacteroides fragilis and B. ovatus were resistant to F alone (MIC >128 mg/ml) based on extrapolated breakpoints. Clostridium perfringens, C. septicum, and Clostridioides difficile were susceptible to F alone (MIC <32 mg/L). All bacterial isolates of any species evaluated were resistant to TS alone (MIC 4/76 - >32/ >608 mg/L). Unexpectedly nearly all isolates were susceptible to the FTS combination (MIC <32/ <2/ <8 mg/L) with antibacterial synergy (FIC <0.5) achieved against all, with the exception of two C. perfringens isolates which were susceptible to the F component (1-8 mg/L) but resistant to the TS component (MIC 4/76 - 8/152 mg/L) when in combination even though MIC synergy was achieved.

Conclusions: Resistance to any other antibacterial class did not impact the unique synergistic activity of the FTS combination against anaerobes. FTS may possess an adequate spectrum for the antibacterial therapy of many mixed and anaerobic infections, and merits clinical evaluation.

---PAGEBREAK---
Session Title: Poster Presentations Session I

Publishing Title: Burden of Antimicrobial Resistance in Hospitalized Patients with Cancer: A Multicenter Analysis

Author Block: V. Gupta, K. Yu, C. Sheets, D. Flayhart, Cancer & AMR Consortium; Becton, Dickinson & Co., Franklin Lakes, NJ

Abstract Body:

Background: Infections are the second leading cause of death in patients with cancer, there has not been any large-scale assessments of AMR in the cancer population. This multi-center study compared the prevalence/incidence of pathogens isolated and related drug resistance in hospitalized cancer and non-cancer patients in the US. **Methods:** Adult patients (≥ 18 years) with 30-day nonduplicate isolates from hospital settings from 4/2018 - 12/2022 were evaluated across 231 facilities in the BD Insights Research Database.

Prevalence and incidence for antimicrobial resistance (AMR) types in non-contaminant gram-negative, gram-positive bacteria, and fungal pathogen incidence across all culture sources were evaluated. Cancer was defined as patients that were prescribed cancer medications in the prior 365 days (https://www.cancer.gov/about-cancer/treatment/drugs) from an index event or were hospitalized to a cancer unit. All other admissions were categorized as non-cancer. **Results:** Across 5,207,336 admissions, 6% (314,201) were categorized as cancer and 94% (4,893,135) as non-cancer. The rate of pathogen identification was higher in cancer patients across all pathogen groups evaluated. The prevalence (% NS) was significantly lower in cancer vs. non-cancer patients for most AMR types evaluated, but incidence (rate/1000 adm) was significantly higher for all AMR types in cancer vs. non-cancer patients (Table). The incidence of VRE and fungal pathogens was ~2-fold higher and AMR in gram-negative pathogens was ~1.5-fold higher in cancer than non-cancer patients. **Conclusions:** Hospitalized cancer patients have a higher incidence (/1000 adm) of AMR than non-cancer patients. Appropriate diagnostics and local AMR incidence studies could inform optimal use of newer or specialized antimicrobials when treating serious infections in cancer patients.

Table 1. Prevalence (% NS) and Incidence (/1000 admissions) of antimicrobial resistance and pathogen distribution in hospitalized patients with and without cancer.

<table>
<thead>
<tr>
<th>Pathogen and AMR Type</th>
<th>Non-Cancer (N=8,899,133 Admissions)</th>
<th>Cancer (N=314,201 Admissions)</th>
<th>Overall Total (N=9,213,334 Admissions)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>% NS (v/N)</td>
<td>% Incidence (Adm)</td>
<td>% NS (v/N)</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa</td>
<td>21.0% (10,428/50,141)</td>
<td>17.2% (8,700/50,141)</td>
<td>17.7% (9,928/56,970)</td>
</tr>
<tr>
<td>Quinolone (FQ) NS</td>
<td>1.3% (10,361/799,375)</td>
<td>1.2% (10,361/799,375)</td>
<td>1.2% (10,361/799,375)</td>
</tr>
<tr>
<td>Multidrug resistant (MDR)</td>
<td>1.3% (10,361/799,375)</td>
<td>1.2% (10,361/799,375)</td>
<td>1.2% (10,361/799,375)</td>
</tr>
<tr>
<td>Carbapenem NS (Carb-NS)</td>
<td>1.3% (10,361/799,375)</td>
<td>1.2% (10,361/799,375)</td>
<td>1.2% (10,361/799,375)</td>
</tr>
<tr>
<td>Enterobacteriaceae (ENT)</td>
<td>1.3% (10,361/799,375)</td>
<td>1.2% (10,361/799,375)</td>
<td>1.2% (10,361/799,375)</td>
</tr>
<tr>
<td>Quinolone (FQ) NS</td>
<td>1.3% (10,361/799,375)</td>
<td>1.2% (10,361/799,375)</td>
<td>1.2% (10,361/799,375)</td>
</tr>
<tr>
<td>Carbapenem NS (Carb-NS)</td>
<td>1.3% (10,361/799,375)</td>
<td>1.2% (10,361/799,375)</td>
<td>1.2% (10,361/799,375)</td>
</tr>
<tr>
<td>Enterococcus spp. (ESBL)</td>
<td>1.3% (10,361/799,375)</td>
<td>1.2% (10,361/799,375)</td>
<td>1.2% (10,361/799,375)</td>
</tr>
<tr>
<td>Enterococcus spp. (ESBL)</td>
<td>1.3% (10,361/799,375)</td>
<td>1.2% (10,361/799,375)</td>
<td>1.2% (10,361/799,375)</td>
</tr>
<tr>
<td>Enterococcus spp. (ESBL)</td>
<td>1.3% (10,361/799,375)</td>
<td>1.2% (10,361/799,375)</td>
<td>1.2% (10,361/799,375)</td>
</tr>
</tbody>
</table>

---PAGEBREAK---

Session Title: Poster Presentations Session II

Publishing Title: Predicting Efficacious Exposures for a Novel β-lactam/β-lactamase Inhibitor with a Semi-mechanistic Model

Author Block: H. R. Meredith1, W. Hope2, S. Ripp3, L. McEntee2, A. Johnson2, G. Stone2, S. Das3, B. Boras4; 1Pfizer, Cambridge, MA, 2Univ. of Liverpool, Liverpool, United Kingdom, 3Pfizer, Groton, CT, 4Pfizer, La Jolla, CA

Abstract Body:

Background: Optimizing antibiotic regimens is critical for successful treatment outcomes. To predict effective regimens, mathematical models have been used to relate treatment outcome and pharmacokinetic/pharmacodynamic (PKPD) properties derived from preclinical in vivo studies. This relationship is often established with an Emax model; however, it relies on indices that
Exploration of the persistence mechanism is increasing. Diseases conditions. Persistence under antibiotic treatment is a possible cause of extended treatment and increased severity of infection.

Background:
Observations of Bacterial Persister Population Dynamics in Antibiotic Environments Using a Library of Gene Deletion Strains

Methods: Here we use cefitabuten-avibactam (CTB-AVI), a novel oral β-lactam/β-lactamase inhibitor (BL/BLI), to compare the Emax and semi-mechanistic models. A mouse thigh infection model generated PKPD data for 7 Enterobacterales isolates with a range of CTB MICs. Both models were fit to data and used to estimate combinations of CTB-AVI exposures that could achieve bacterial stasis after 24 hours of treatment, the target outcome.

Results: For different regimens and isolates, the Emax model captured the change in bacterial burden after treatment while the semi-mechanistic model captured the temporal dynamics of the bacterial antibiotic response. With decreasing CTB exposure, both models estimated increasing AVI exposure was necessary for bacterial stasis. While the AVI exposure estimates from both models converged at high CTB exposures, they diverged at lower CTB exposures with the semi-mechanistic model estimating more AVI. Ultimately, a combination of CTB and AVI exposure was selected that both models agreed upon.

Conclusions: While semi-mechanistic models have been used for decades, they are not widely used in regulatory filing as a tool to set PKPD targets and estimate efficacious doses. By comparing the modeling approaches and their recommended exposures for this novel BL/BLI, we aim to provide a case study in how semi-mechanistic models can be a better tool for informing the dose selection process both for internal decision making and discussions with regulators.

---PAGEBREAK---

Poster Presentations Session II

Title: Efficacy of an AMP-Based Therapy to Control Bovine Mastitis Pathogens

Author: H. Mantovani¹, A. Moreira¹, K. Domingues², A. Assumpçao³, K. Camargo⁴, N. Aulik⁵; ¹Univ. OF WISCONSIN-MADISON, Madison, WI, ²Univ. de Federal de Viçosa, Viçosa, Brazil

Background: Bovine mastitis is the costliest disease in the dairy sector and is the main cause for antibiotic use in dairy cattle. Antimicrobial peptides (AMPs) have been proposed as alternatives to antibiotics to control bovine mastitis pathogens. In this study, the efficacy of AMPs and chemical adjuvants was assessed against a range of mastitis-causing pathogens, including *Escherichia coli*, *Klebsiella pneumoniae*, *Staphylococcus aureus*, *Staphylococcus chromogenes*, *Streptococcus agalactiae*, *Streptococcus uberis*, and *Streptococcus dysgalactiae*.

Methods: Five AMPs identified in the rumen and human gut microbiomes were evaluated, along with two potential chemical adjuvants. Minimum inhibitory concentrations (MICs) were determined for each bacterial strain (n=35). The two most effective treatments with a broad spectrum of activity were selected for combinatorial assays. The Fractional Inhibitory Concentrations Index (FICI) was calculated to determine interaction effect. A FICI ≤ 0.5 was indicative of synergism. The lowest FICI combination, which resulted in inhibition of all 35 strains tested, was chosen for further evaluation. Time-dependent killing assays were performed to assess bactericidal efficacy of the combination. Cytotoxicity against bovine mammary alveolar (MAC-T) cells was evaluated using the MTT assay. Hemolytic activity was assessed against fresh bovine erythrocytes.

Results: AMP1 and CA1 exhibited the highest antimicrobial activity, reducing the final optical density at 600 nm (OD600) by 95% and 86.8%, respectively, and were therefore selected for further analyses. FICI values ranged from 0.1 to 0.5, indicating synergism. The combination of AMP1 (32 µg/mL) and CA1 (1,024 µg/mL) exhibited superior antimicrobial activity against all bacterial strains, at significantly lower concentrations (4 and 16-fold reduction for AMP1 and CA1, respectively) than each compound individually. AMP1+CA1 combination reduced the viable population by 1,000-fold within 12 hours. The combination is non-hemolytic in concentrations up to 16-fold higher than the established MIC values (P = 0.41). However, cytotoxic effects were observed for CA1 against MAC-T cells (P = 0.01).

Conclusions: These results indicate that AMP1 can be used to develop antibiotic-free formulations to control contagious and environmental mastitis pathogens. Further experiments will focus on developing delivery systems to evaluate the efficacy of these molecules in vivo.

Poster Presentations Session II

Title: Observations of Bacterial Persister Population Dynamics in Antibiotic Environments Using a Library of *Escherichia coli* Gene Deletion Strains

Author: A. Muto¹, S. Hingley-Wilson², C. Furusawa³, J. McFadden², H. Mori³; ¹RIKEN, Suita, Japan, ²Univ. of Surrey, Guildford, United Kingdom, ³Guangzhou, 44, China

Background: Bacterial persistence is a phenomenon in which a small fraction of a clonal bacterial population can survive lethal conditions. Persistence under antibiotic treatment is a possible cause of extended treatment and increased severity of infectious diseases. Recently, evidence suggesting that persistence enhances resistance acquisition has been reported, and the importance of the exploration of the persistence mechanism is increasing.

Efficacy of an AMP-Based Therapy to Control Bovine Mastitis Pathogens
Methods: An *E.coli* knock-out library carrying artificial nucleotide sequences (DNA bar-code) in their chromosomes were used. By amplification and sequencing of the bar-code region, we have obtained frequency information of strains in the samples and observed time-course dynamics changes. For the candidate strains obtained, single-cell observation and image tracking were performed.

Results: We have observed the population dynamics change in the persister colonies grown on antibiotics-free agar plates after spreading an antibiotics-treated mixed culture of mutant strains (Fig). From the observation, two mutant strains with high-persister phenotypes were identified and individually confirmed. Microfluidics experiments using confocal microscopy showed a high regrow rate of the strains after the removal of antibiotics and persister cells.

Conclusions: We have obtained a new observation of the bacterial persister population dynamics. From the observation, we found the new high-persister genotype and observed the phenotype at the single-cell level. Since the genes deleted in the strains are known to contribute to bacterial resistance, our observations may contribute to the elucidation of mechanisms related to the relationship between resistance and persistence.
Fig. Observed E.coli knock-out strains population dynamics under ciprofloxacin treatment.

Relative abundance of each knockout strain in persister colonies

Ciprofloxacin

\log_{10} surviving fraction

Session Title: Poster Presentations Session II

Pharmacokinetics-pharmacodynamics (PK-PD) of new broad-spectrum agent BWC0977

Author Block: L. McEntee1, N. Farrington1, A. Johnson1, I. Horner2, A. Stevenson3, J. Unsworth1, H. Katakonda3, B. Subramanian4, A-G. Martson1, S. Das1; 1Univ. of Liverpool, Liverpool, United Kingdom, 2Liverpool, United Kingdom, 3Bugworks, Bangalore, India, 4Bangalore, India

PK-PD of new broad-spectrum agent BWC0977

APT Group, University of Liverpool, UK Bugworks, Bangalore, India

Background: New antibacterial agents for drug-resistant infections are urgently needed. BWC0977 is a novel potent gyrase-topoisomerase inhibitor with activity against ESBLs, AmpC, KPCs and fluoroquinolone-resistant strains currently being assessed in a Phase 1 clinical programme. Herein we describe the PK-PD of BWC0977 assessed in the murine thigh infection model.

Methods: A 26-hour neutropenic murine thigh infection model was used for dose ranging and fractionation. Challenge strain P. aeruginosa NCTC 13921 was used for dose fractionation studies and PK and further isolates of P. aeruginosa, A. baumannii, and Enterobacterales with resistance mechanisms were used for dose ranging (Table 1).

A destructive design was employed, with mice dosed subcutaneously 2 hours post-infection and bacterial density (CFU/g) infection compared to a 2h baseline control taken as the endpoint. A total daily dose of BWC0977 160 mg/kg was fractionated; 160 mg/kg q24h, 80 mg/kg q12h, 40 mg/kg q6h with PD samples taken at 2, 8, 14, 26 hours post-infection. For dose ranging, BWC0977 was administered q8h and polymyxin B was used as comparator. For PK, BWC0977 was dosed at 10, 40, 80, 120 mg/kg q24h with samples taken at 0.5, 1, 2, 4, 6, 8, 24 hours post-dose.

Results: A 2-compartment model with linear clearance was fitted to the PK data. The more fractionated regimens did not outperform the once daily regimen. The best PK-PD index was defined to be fAUC/MIC. There was an excellent dose response to the tested bacterial isolates. K. pneumoniae and A. baumannii strains showed the highest variability in the CFU decline.

Conclusions: The defined PK/PD index for efficacy for BWC0977 is fAUC/MIC.

Table 1. Challenge strains

<table>
<thead>
<tr>
<th>Species</th>
<th>Strain</th>
<th>Molecular info</th>
<th>BWC0977 MIC (mg/L)</th>
<th>Meropenem MIC (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P. aeruginosa</td>
<td>ATCC 27853</td>
<td>WT</td>
<td>0.5</td>
<td>0.25-0.5</td>
</tr>
<tr>
<td>P. aeruginosa</td>
<td>NCTC 13921</td>
<td>SPM-1</td>
<td>0.25</td>
<td>>64</td>
</tr>
<tr>
<td>P. aeruginosa</td>
<td>NCTC 13437</td>
<td>VIM-10, VEB-1</td>
<td>0.5</td>
<td>>64</td>
</tr>
<tr>
<td>A. baumannii</td>
<td>NCTC 13301</td>
<td>OXA-23</td>
<td>0.25</td>
<td>>64</td>
</tr>
<tr>
<td>A. baumannii</td>
<td>ATCC 17978</td>
<td>WT</td>
<td>0.125-0.25</td>
<td>0.25-1</td>
</tr>
<tr>
<td>K. pneumoniae</td>
<td>NCTC 13465</td>
<td>CTX-M25</td>
<td>0.125-0.25</td>
<td>0.125</td>
</tr>
<tr>
<td>K. pneumoniae</td>
<td>ATCC 43816</td>
<td>WT</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>E. coli</td>
<td>ATCC BAA-2523</td>
<td>OXA-48</td>
<td>0.06-0.125</td>
<td>0.5-1</td>
</tr>
<tr>
<td>E. coli</td>
<td>NCTC 13462</td>
<td>CTX-M2</td>
<td>0.06</td>
<td>0.5-1</td>
</tr>
</tbody>
</table>

---PAGEBREAK---

Control Number: 2023-A-98-ASM-ESC
Poster Presentations Session II

Murine pharmacodynamics of SPR206

Abstract Body:

_L. McEntee_1, A. Johnson1, N. Farrington1, I. Horner1, A. Stevenson1, J. Unsworth1, B. Kane2, N. Cotroneo2, I. Critchley2, J. Bruss3, S. Das1, *1Univ. of Liverpool, Liverpool, United Kingdom, 2Spero Therapeutics, Cambridge, MA, 3Alarus Dev. Intl., LLC, Pagosa Springs, CO*

Background: SPR206 is a polymyxin derivative with improved efficacy and reduced toxicity relative to polymyxin B in preclinical models. SPR206 is in development for nosocomial pneumonia and has a broad spectrum of activity against Gram-negative pathogens, including carbapenem-resistant *A. baumannii* (CRAB), *P. aeruginosa* (CRPA), and *K. pneumoniae*. In *vivo* murine models of infection were used to identify the pharmacokinetic-pharmacodynamic (PK-PD) index that describes the link between antibacterial effect and drug exposure. This index was used to estimate exposure targets required for achieving stasis and logarithmic killing, with focus on *P. aeruginosa* and *K. pneumoniae*. **Methods:** Dose finding and dose fractionation studies were performed in neutropenic CD-1 mouse thigh and lung models of infection against wild-type and non-wild-type P. aeruginosa and K. pneumoniae. The study endpoint was the bacterial density (CFU/g) in the thigh or lung, 26 hours post infection. SPR206 was subcutaneously administered 2 hours post infection. Plasma and ELF PK were established using dosages of 5, 25, and 50 mg/kg q8h, with drug concentrations measured in the 1st and 3rd dosing intervals by LC/MS/MS, and a population PK model was fitted to the data in **Pmetrics.** A traditional dose fractionation study was performed by fractionating doses of SPR206 25, 50, 65, and 75 mg/kg q6h, q12h, and q24h and the Sigmoid Emax model was used to fit the data to different PK-PD indices. P. aeruginosa and K. pneumoniae were co-modelled by species to determine median exposure targets. **Results:** In Pmetrics, a 4-compartment structural model was fitted to the plasma and ELF data. SPR206 showed approximately 62% partitioning into the lungs for all dose groups. SPR206 was concentration-dependent with a long persistent effect. Although AUC:MIC and Cmax:MIC fitted the data well, the totality of the data generated was considered and AUC:MIC was selected, which has also been well established for the polymyxin class. For P. aeruginosa, fAUC:MIC plasma targets in the thigh were 39-85 and in the lung 44-108, for stasis and 2 log kill, respectively. AUC:MIC ELF targets in the lung were 33-84 for stasis and up to 2 log kill. For K. pneumoniae, fAUC:MIC plasma targets in the lung were 582-1044 for stasis and up to 2 log kill, in the thigh the stasis target was 220, and AUC:MIC ELF targets in the lung were 448-598 for stasis and 1 log kill. **Conclusions:** The exposure targets derived from these studies will be used to support probability of target attainment (PTA) in patients who will receive SPR206.

---PAGEBREAK---

Poster Presentations Session II

Optimization of Pseudomonas aeruginosa LasB Inhibitors Guided by In Vitro ADMET Profiling

Abstract Body:

_A. M. Kani_1, J. Konstantinovic1, A. Alhayek1, A. Klein1, D. Kolling1, R. Shafiei1, C. Schütz1, B. Loretz1, C.M. Lehr1, K. Rox2, J. Haupenthal1, A. K. H. Hirsch1, 1Helmholtz Inst. for Pharmaceutical Res. Saarland, Saarbrücken, Germany, 2Helmholtz Ctr. for Infection Res., Braunschweig, Germany*

Background: Infections caused by *Pseudomonas aeruginosa* are becoming increasingly difficult to treat due to the rise of antimicrobial resistance. This poses a particular threat to patients suffering from *e.g.* hospital-acquired or ventilator-associated pneumonia (HAP/VAP), cystic fibrosis or non-cystic fibrosis bronchiectasis. To develop novel, non-traditional treatments targeting *P. aeruginosa* virulence, the secreted protease elastase (LasB) represents a prime target due to its key role in bacterial virulence and its extracellular localization. We optimized a thiol-based LasB inhibitor scaffold by exploring different zinc-binding groups aiming at improved *in vitro* activity and a favorable *in vitro* ADMET profile. **Methods:** Alongside *in vitro/ex vivo* activity profiling of LasB inhibitors, we investigated their *in vitro* ADMET properties using a tiered screening cascade. The established models assess physicochemical properties, cytotoxicity, metabolic and plasma stability as well as plasma protein binding for various species. We further investigated cell permeability across Calu-3 monolayers, which provides essential information regarding lung retention, which is required for *in vivo* efficacy. **Results:** Following the multiparameter approach described above, we have identified a phosphonate-based inhibitor scaffold as most promising to be advanced into more detailed *in vivo* profiling. The determined *in vitro* ADMET properties could be translated in favorable bioavailability and efficacy in murine *in vivo* infection models. **Conclusions:** Rational screening of *in vitro* ADMET parameters of LasB inhibitors alongside their on-target activity provides essential information favoring the development of non-traditional treatment options for infections with drug-resistant *P. aeruginosa*. The generated information serves as a screening tool for further compound optimization. **Conflict of interest:** We declare that parts of the authors are co-inventors on an international patent application (PCT/EP2021/073381) that includes technologies described in this abstract.

---PAGEBREAK---
Control Number: 2023-A-110-ASM-ESC

Session Title: *Poster Presentations Session II*

Publishing Title: Synergistic Bactericidal Activity of Bovicin HC5 in Combination with Cephalosporins Against Bovine Mastitis Pathogens and MRSA

Author Block:

H. Mantovani
K. Domingues
L. Oyama
S. Huws
WISCONSIN-MADISON, Vicosa, Brazil
Queen’s Univ. Belfast, Belfast, United Kingdom

Abstract Body:

Background: Bovine mastitis is an inflammatory disease that represents a major economic challenge for dairy farmers. Mastitis is the costliest disease in the dairy industry and the leading cause of antibiotic use in dairy cattle. In this work, the effectiveness of combinations containing the lantibiotic bovicin HC5 and the leading concentration of antibiotics was demonstrated against the main etiologic agents of bovine mastitis in addition to antibiotic resistant strains and MRSA.

Methods: The synergism between ceftriaxone (Ceft) or cephalexin (Cepha) with bovicin HC5 (HC5) was evaluated against S. aureus strains using dose-response matrices (checkerboard) for FICI determination. The killing kinetics was evaluated by time-kill assays and safety assessments were performed by hemolysis of bovine red blood cells and cytotoxicity (MTT) assays using primary bovine mammary alveolar cells (MAC-T). The impact on biofilm formation and disruption was also evaluated. The effects on membrane permeability of each antimicrobial or the combination was determined.

Results: The Ceft-HC5 and Cefa-HC5 combinations showed FICI of 0.53 and 0.58 respectively, with a reduction of up to 85% in the amount of antibiotic needed to inhibit the growth of target bacteria. Combinations of ceftriaxone and cephalexin with bovicin HC5 increased the rate of killing of the antibiotics used alone. The MIC of a ceftriaxon-resistant S. uberis strain was reduced from 256 µg/ml to 2 µg/ml when ceftriaxone was combined with 5.6 µg/ml of bovicin HC5. The lantibiotic was capable to disrupt established bacterial biofilms and the combination showed synergism against MRSA with a FICI minimum < 0.35. When a concentration of bovicin HC5 ≤ 11.2 µg/ml was used, the MIC of ceftriaxone decreased from ≥256 µg/ml to <2 µg/ml for MRSA. No major changes in membrane integrity were observed upon treatment with bovicin HC5 or the lantibiotic-antibiotic. The synergism of bovicin HC5 was maintained for other beta-lactams (penicillin and meropenem), suggesting complementarity of mechanisms of action. The USA300 strain, a clinically important MRSA, showed reduction in the MIC to meropenem from 6.6 µg/ml to 0.33 µg/ml when in combination with 11.2 µg/ml bovicin HC5. No increase in toxicity was observed for the combination.

Conclusions: The lantibiotic bovicin HC5 shows synergism with beta-lactam antibiotics and could be a therapeutic adjuvant to improve the efficacy of traditional antibiotics while reducing resistance.

---PAGEBREAK---

Control Number: 2023-A-114-ASM-ESC

Session Title: *Poster Presentations Session II*

Publishing Title: Diagnostic Accuracy of Rapid Assays For Diagnosis of Bloodstream Infections And Antimicrobial Profiling of Pathogens That Causes Bloodstream Infections At a Tertiary Hospital In Polokwane, Limpopo Province, South Africa

Author Block:

N. A. Maswanganyi
W. Songafas
R. M. Lekalakala-Mokaba
I. Rukasha
D. Mukavhanyedzi
Univ. OF LIMPOPO - SOUTH AFRICA, Polokwane, South Africa

Abstract Body:

Background: Antimicrobial resistance is a significant global public health threat. There is a high mortality and morbidity rate that is associated with multi-drug resistance pathogens in South Africa, which negatively impacts the patients’ clinical outcome. Turnaround time for diagnosis of BSI is long, rendering the results clinically irrelevant. Thus, there is a need for a faster and more accurate diagnosis platform for diagnosis of BSI. There is also a need to employ more ways to minimize antimicrobial resistance globally and to develop more antimicrobials that will be more effective against these MDR microorganisms. There is also a need to rapidly diagnose and identify the pathogens that cause BSI.

Methods: We conducted a prospective cross-sectional study in patients suspected of having bloodstream infections at Pietersburg Hospital, Polokwane, South Africa from February to May 2023. The blood cultures were incubated in the BD Bactec machine. The positive blood cultures were run on the VITEK 2 and BioFire Film Array BCID2 machines, to identify the pathogens, their AMR genes, as well as their antimicrobial susceptibility patterns. The data was analysed using Excel.

Results: Of the pathogens that were isolated from the positive blood cultures, most of them were Gram-negative bacilli. The most common organisms isolated were *Acinetobacter baumannii* complex constituting 30%, followed by *Enterobacter cloacae* complex with 24%, *Klebsiella pneumoniae* group with 18%, *Escherichia coli* with 15%, and *Pseudomonas aeruginosa* with 12%. The AMR genes identified were mecA/C gene (33%), CTX-M (33%), NDM (18%), OXA-48 Like (12%), and VIM (3%). Of all the antimicrobials tested, ampicillin (82%), cefotaxime (77%), and trimethoprim-sulfamethoxazole (76%), showed the highest level of resistance. Most pathogens were isolated from male patients (48%), and from children between 0 to 5 years (48%).

Conclusion: There is a significant rise in the statistics of Carbapenem-resistant organisms. The current state of clinical care is severely hampered by antimicrobial resistance. The impact of multidrug-resistant organisms may be reduced in the future with the use of novel antimicrobial methods, modified usage of antimicrobial agents, and public health measures. The BCID2 provides a faster and more accurate diagnosis of BSI as compared to the traditional culture methods and VITEK2.

---PAGEBREAK---
Background: The prevalence of antimicrobial resistance (AMR) among pathogenic bacteria in livestock warrants alternate therapeutic strategies that are efficient in remediating zoosotic infections. Combination therapy with more than one antimicrobial with complementary action has shown possibilities to prevent or slow down AMR. The application of clay-based biomaterials could, however, resolve challenges of poor bioavailability, cytotoxicity, stability, release, and overdosing and play a significant role in formulating effective therapeutics. Methods: In this study, a nanocomposite (GH-TA-Ag-NT) containing silver nanoparticles (Ag NPs) grafted onto tannic acid (TA)-modified halloysite nanotubes (hal NTs) was generated and compared with TA-stabilized Ag NPs (Ag-TA-NT) for physicochemical and antibacterial properties. The TEM, FT-IR, DSC, and XRD spectroscopies were used for physicochemical characterization, while fluorometric assays were used for quantitative analysis of antibacterial properties. The toxicity and antibacterial efficiency of GH-TA-Ag-NT to eliminate gastrointestinal infection were tested using S. Typhimurium-infected Caenorhabditis elegans model. Results: GH-TA-Ag-NT was biocompatible as ≤125 µg/mL showed no toxicity to human intestinal Caco-2 cells. It demonstrated enhanced stability and drug bioavailability with a slow release of Ag⁺ and TA. It showed a combinatorial effect with a synergistic antibacterial behavior mediated through anti-efflux, anti-biofilm properties, oxidative stress, loss of bacterial membrane potential, and integrity and, thus, showed superior antibacterial performance when tested against multi-drug resistant (MDR) Salmonella enterica serovar Typhimurium (isolated from swine). It also remediated intracellular infection of Salmonella in the Caco-2 cells. A 62.5 µg/mL of GH-TA-Ag-NT was non-toxic, significantly reduced Salmonella colonization in Caenorhabditis elegans, and improved survivability. Conclusion: We demonstrated a nano-enabled antibacterial combination therapy (NeACT) using GH-TA-Ag-NT with better antimicrobial and physicochemical properties and thus propose potential use as a therapeutic in animal agriculture.

---PAGEBREAK---

Effect of Media on the Bactericidal Activity of NOSO502, a Novel Odilorhabbin Antibiotic

Abstract Body:

At a concentration of 5mg/L NOSO502 the d24s were: +2.1±0.4 in 100% MNB, -2.2±0.6 in 50% MHB, -0.4±1.8 in RPMI and -0.6±1.6 in DMEM. At NOSO502 concentrations of 10mg/L d24 were: -2.4±2.2 in 100% MNB, -3.8±0.7 in 50% MHB, -2.0±0.6 in RPMI and -3.4±1.0 in DMEM. At NOSO502 concentrations of 30mg/L d24 were -4.1±0.2 100% MHB, -4.2±0.1 50% MHB, -3.6±1.8 RPMI and -4.2±0.2 DMEM. Similar trends were apparent with AUBKC with 100% MHB producing the largest areas (least efficacy) and 50% MHB, RPMI and DMEM lowest areas (most killing). ANOVA indicated no significant difference between killing in 50% MHB, RPMI and DMEM but for NOSO502 concentrations of 5 and 10mg/L there were significant differences between 100% MHB, and the other three media tested. **Conclusion:** Bacterial killing by NOSO502 is influenced by media type being less in 100% MNB than in 50% MHB, RPMI or DMEM. Use of 50% MHB maybe optimal for use in vitro pharmacodynamic studies which involve endpoints depended on bacterial killing. This work was funded by IMI Call 16 GNA-NOW programme Grant Agreement Number 853979